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Notation. Separation of length scales is the basis of homogeniza-
tion. We introduce here the small scale parameter ϵ as the ratio of
the size of the reference cell to the size of the embryo:

ϵ ¼ l
L
:

To establish notation, consider the cortical region of the entire
embryo to be a bounded domainΩ. The geometric structure with-
in Ω is obtained by the periodic repetition of the reference cell Y ,
where in this periodic geometry Ωϵ

n represents a nucleus, Γϵ is the
surface of a nucleus, andΩϵ

c is the surrounding cytoplasm (Fig. 2C
of the main text). The superscript ϵ indicates dependence on the
period ϵL used to define the geometry. Species concentration and
diffusivity are denoted Cϵ

cðx;tÞ and Dϵ
c in the cytoplasm, and

Cϵ
nðx;tÞ and Dϵ

n in the nucleus. We assume that the nucleus and
cytoplasm are isotropic, so that the diffusivities are scalar and
constant. Because cytoplasmic and nuclear diffusivities are de-
fined in their respective regions, the coefficients oscillate with
period Y :

Dϵ
c;nðxÞ ¼

�
Dc;n if x ∈ Ωϵ

c;n;
0 otherwise.

Nondimensionalization. The microscopic problem for concentra-
tion dynamics is given by

∂Cϵ
c

∂t
¼ ∇ · ðDϵ

c∇Cϵ
cÞ; x ∈ Ωϵ

c; [S1]

∂Cϵ
n

∂t
¼ ∇ · ðDϵ

n∇Cϵ
nÞ; x ∈ Ωϵ

n; [S2]

Dϵ
c∇Cϵ

c · n ¼ Dϵ
nCϵ

n · n; x ∈ Γϵ; [S3]

Dϵ
c∇Cϵ

c · n ¼ kþCϵ
c − k−Cϵ

n; x ∈ Γϵ: [S4]

Here n is the outward normal to the boundary Γϵ. Continuity of
flux on the surface of the nucleus is imposed, and nuclear import
and export are modeled as first-order reactions with interfacial
mass transfer coefficients, kþ and k−. Their ratio κ ¼ kþ∕k− re-
presents an equilibrium constant for nucleocytoplasmic shuttling.
Equivalent descriptions have been used to describe interfacial
transport between two immiscible fluids (1, 2) as well as interfa-
cial transfer in porous media (1, 3).

To nondimensionalize the problem, we introduce the following
dimensionless variables:

~y ¼ x∕l; ~t ¼ t∕T; ~Cϵ
c ¼ Cϵ

c∕Cref ; ~Cϵ
n ¼ Cϵ

n∕Cref ;

and dimensionless parameters:

~Dϵ
c ¼

T
L2

Dϵ
c; ~Dϵ

n ¼
T
L2

Dϵ
n; ~k− ¼ T

L
k−; κ ¼ kþ∕k−;

where T is the total duration of the last five nuclear cycles and
Cref is a reference concentration. These dimensionless numbers

provide a measure for the relative influence of the system phe-
nomena. By investigating orders of magnitude, we can determine
the dominating mechanism that governs the concentration dy-
namics. Therefore, careful attention must be given to the dimen-
sionless values because different types of macroscopic limit
problems may result (3, 4).

The dimensionless numbers in this study are determined from
the measurements for the diffusion constant of biologically inert
molecules in the early embryo (5), cortical geometry (6), and nu-
clear cycle duration (7):

Dc ¼ 15 μm2∕s; L ¼ 490 μm; T ¼ 7;200 s: [S5]

The effective nuclear lifetime of Bicoid (Bcd) was measured to be
about τ ¼ 70 s (6). Assuming Bcd is not degraded in the nucleus,
we can compute the nuclear export rate using the average volume
Vn and surface area Sn of a spherical nucleus at cycle 12 [average
diameter ≈9 μm (6)]:

k− ¼ Vn

Snτ
¼ 0.021 μm∕s: [S6]

According to Eqs. S5 and S6, the following dimensionless para-
meters are calculated:

~Dϵ
c ¼ 0.45; ~k− ¼ 0.31:

To ensure proper scale separation such that the homogenization
process works, the following condition must hold (3):

l2

TDϵ
c
¼ ϵ2

~Dϵ
c

∼Oðϵ2Þ: [S7]

On the basis of our calculation for ~Dϵ
c, the condition of Eq. S7

is met.
On account of lacking a measurement for the nuclear diffusion

coefficient, we investigate possible regimes in which the diffusion
coefficient may lie. We perform the homogenization analysis for
different values of the exponent m in

Dϵ
n

Dϵ
c
∼OðϵmÞ

and compare the results. For m < 2, we find that the limit pro-
blems determined from homogenization are the same, assuming
~Dϵ
c, ~k−, and κ ∼Oð1Þ (see ref. 4 for details). For ease of presenta-

tion, we let m ¼ 0. Essentially, we are in a regime in which diffu-
sion inside the nucleus does not affect morphogen gradient
dynamics on the macroscale.

It is necessary to determine the strength of interfacial mass
transfer relative to the diffusion process. In the literature (3),
the Sherwood number is a dimensionless number relating the dif-
fusivity of the interfacial barrier to the diffusivity within the com-
ponent, similar to the Biot number in heat transfer. In our model,
the Sherwood number is lk−

Dϵ
c
¼ ϵ

~k−
~Dϵ
c
∼OðϵÞ. On the basis of this cal-

culation and experimental observation, we assume the system is
in a regime of rapid nucleocytoplasmic kinetics (3). Thus, nuclear
exchange occurs fast enough for cytoplasmic and nuclear concen-
trations to be in local equilibrium; κ represents the ratio of con-
centrations. Although a measurement for the nuclear import rate
is unavailable, we can extract a value for κ from the concentration
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profiles visualized in Drosophila embryos. Bicoid profiles are
identified in embryos that have endogenous Bcd replaced with
a fluorescent eGFP-Bcd fusion protein (6), from which it is de-
termined that κ ∼ 5.

The following dimensionless system is obtained:

ϵ2
∂ ~Cϵ

c

∂~t
¼ ~∇ · ð ~Dϵ

c
~∇ ~Cϵ

cÞ; ~x ∈ ~Ωϵ
c;~t ∈ ð0;1Þ; [S8]

ϵ2
∂ ~Cϵ

n

∂~t
¼ ~∇ · ð ~Dϵ

n
~∇ ~Cϵ

nÞ; ~x ∈ ~Ωϵ
n;~t ∈ ð0;1Þ; [S9]

~Dϵ
c
~∇ ~Cϵ

c · n ¼ ~Dϵ
n
~Cϵ
n · n; ~x ∈ ~Γϵ;~t ∈ ð0;1Þ; [S10]

~Dϵ
c
~∇ ~Cϵ

c · n ¼ ϵ~k−ðκ ~Cϵ
c − ~Cϵ

nÞ; ~x ∈ ~Γϵ;~t ∈ ð0;1Þ: [S11]

Details of the Homogenization Approach. We describe here the ap-
proach for deriving an equivalent macroscopic description from
the dimensionless microscopic system (Eqs. S8–S11). Tildes are
dropped for convenience.

Asymptotic expansion. The syncytium is considered a multiscale
system; we characterize it by two spatial variables, a local variable
y and a global variable x ¼ ϵy. The gradient operator is written as

∇≡ ∇y þ ϵ∇x;

where the subscripts indicate the partial derivatives with respect
to x and y. The two-scale asymptotic expansions for Cϵ

c and Cϵ
n

have the form

Cϵ
cðx;y;tÞ ¼ Cc0ðx;y;tÞ þ ϵCc1ðx;y;tÞ þ ϵ2Cc2ðx;y;tÞ þ⋯;

Cϵ
nðx;y;tÞ ¼ Cn0ðx;y;tÞ þ ϵCn1ðx;y;tÞ þ ϵ2Cn2ðx;y;tÞ þ⋯;

where each term Cjðx;y;tÞ is Y -periodic with respect to the micro-
scopic variable. We begin the homogenization approach with an
asymptotic analysis of the nondimensional system. First, the mi-
croscale problem is rewritten in terms of the asymptotic expan-
sions. Then, by comparing the coefficients of different powers of
ϵ, a cascade of equations for each term Cjðx;y;tÞ is obtained. The
boundary value problem in terms of ϵ is

ϵ2
∂Cϵ

c

∂t
¼ ðAc

0 þ ϵ1Ac
1 þ ϵ2Ac

2ÞCϵ
c; x ∈ Ω;y ∈ Ωϵ

c; [S12]

ϵ2
∂Cϵ

n

∂t
¼ ðAn

0 þ ϵ1An
1 þ ϵ2An

2ÞCϵ
n; x ∈ Ω;y ∈ Ωϵ

n; [S13]

Dϵ
cð∇y þ ϵ∇xÞCϵ

c · n ¼ ϵk−ðκCϵ
c − Cϵ

nÞ; x ∈ Ω;y ∈ Γϵ; [S14]

Dϵ
nð∇y þ ϵ∇xÞCϵ

n · n ¼ ϵk−ðκCϵ
c − Cϵ

nÞ; x ∈ Ω;y ∈ Γϵ; [S15]

where, for i ∈ ðc;nÞ,

Ai
0 ¼ ∇y · ðDϵ

i∇yÞ; Ai
1 ¼ ∇y · ðDϵ

i∇xÞ þ ∇x · ðDϵ
i∇yÞ;

Ai
2 ¼ Dϵ

i∇2
x :

Lowest order problems. The next step of the multiscale expansion
method is to solve the problems for the lowest power of ϵ. The
problem for cytoplasmic concentration at Oð1Þ is

Ac
0Cc0 ¼ 0; Dϵ

c∇yCc0 · n ¼ 0.

Because Cc0 is periodic in Y , it follows that the only solution is a
function independent of the local variable, Cc0 ¼ Cc0ðx;tÞ. By si-
milar reasoning, the only solution to

An
0Cn0 ¼ 0; Dϵ

n∇yCn0 · n ¼ 0;

in the region Ωϵ
n, is a function independent of the local variable,

Cn0 ¼ Cn0ðx;tÞ. The functions Cc0ðx;tÞ and Cn0ðx;tÞ serve as the
first-term approximations.

The reference cell problem. The multiple scales approach of homo-
genization yields a boundary value problem that must be solved in
order to determine the effective diffusivity. This boundary value
problem, commonly referred to as the cell problem, arises from
solving Eqs. S12–S15 at OðϵÞ:

Ac
0Cc1 þ Ac

1Cc0 ¼ 0; [S16]

An
0Cn1 þ An

1Cn0 ¼ 0; [S17]

Dϵ
cð∇yCc1 þ ∇xCc0Þ · n ¼ k−ðκCc0 − Cn0Þ; [S18]

Dϵ
nð∇yCn1 þ ∇xCn0Þ · n ¼ k−ðκCc0 − Cn0Þ: [S19]

We have shown that both Cc0 and Cn0 are y-independent. From
the divergence theorem, the right-hand sides of Eqs. S18 and S19
are zero. Thus, Cn0 ¼ κCc0, which signifies that the cytoplasmic
and nuclear concentrations are in local equilibrium.

Eqs. S17 and S19 reduce to

∇y · ðDϵ
nð∇yCn1 þ ∇xCn0ÞÞ ¼ 0; Dϵ

nð∇yCn1 þ ∇xCn0Þ · n ¼ 0.

To solve this system, we define a function

αðx;y;tÞ ¼ Cn1 þ y · ∇xCn0 þ ᾱðx;tÞ;

that satisfies

∇y · ðDϵ
n∇yαÞ ¼ 0; Dϵ

n∇yα · n ¼ 0;

in the region Ωϵ
n. The solution, αðx;y;tÞ ¼ 0, generates the follow-

ing equality:

Dϵ
nð∇yCn1 þ ∇xCn0Þ ¼ 0: [S20]

From Eqs. S16 and S18:

∇y · ðDϵ
cð∇yCc1 þ ∇xCc0ÞÞ ¼ 0; Dϵ

cð∇yCc1 þ ∇xCc0Þ · n ¼ 0.

A separation of variables for Cc1 yields

Cc1 ¼ fðyÞ · ∇xCc0 þ C̄c1ðx;tÞ; [S21]

where C̄c1ðx;tÞ is an arbitrary function independent of the micro-
scopic variable and fðyÞ is a correction to the homogenized
solution Cc0ðx;tÞ. The function f k is the Y -periodic solution to
the cell problem:

∇y · ðDϵ
cð∇yf k þ ekÞÞ ¼ 0; y ∈ Ωϵ

c; [S22]

Dϵ
cð∇yf k þ ekÞ · n ¼ 0; y ∈ Γϵ: [S23]
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The cell problems are solved numerically; details of the calcula-
tions are described below.

The homogenized equation. The third term in the expansion of
cytoplasmic and nuclear concentrations must be considered in
order to obtain a first-term approximation. The problem at
Oðϵ2Þ is

∂Cc0

∂t
¼ Ac

0Cc2 þ Ac
1Cc1 þ Ac

2Cc0; [S24]

∂Cn0

∂t
¼ An

0Cn2 þ An
1Cn1 þ An

2Cn0; [S25]

Dϵ
cð∇yCc2 þ ∇xCc1Þ · n ¼ k−ðκCc1 − Cn1Þ; [S26]

Dϵ
nð∇yCn2 þ ∇xCn1Þ · n ¼ k−ðκCc1 − Cn1Þ: [S27]

To obtain an equation for nuclear dynamics, we integrate Eq. S25
on Ωϵ

n and apply Eqs. S27 and S20:

jΩϵ
nj
∂Cn0

∂t
¼

Z
Γϵ
k−ðκCc1 − Cn1ÞdSy: [S28]

Next, we integrate Eq. S24 onΩϵ
c and apply Eqs. S26 and S21 and

the periodicity condition to obtain an evolution equation for
cytoplasmic concentration:

jΩϵ
cj
∂Cc0

∂t
¼ ∂C2

c0

∂xj∂xk

Z
Ωϵ

c

Dc

�
∂f k
∂yj

þ δjk

�
dVy

−
Z
Γϵ
k−ðκCc1 − Cn1ÞdSy; [S29]

where δjk is the Kronecker delta function and summation nota-
tion is assumed. Because cytoplasmic and nuclear concentrations
are in local equilibrium, Eqs. S28 and S29 yield a first-order ap-
proximation for cytoplasmic concentration:

ðϕþ ð1 − ϕÞκÞ ∂Cc0

∂t
¼ DG∇2

xCc0; x ∈ Ω:

The components of the effective diffusion tensor DG ¼ ðDjkÞj;k
are defined as

Djk ¼
1

jY j
Z
Ωϵ

c

Dc

�
∂f k
∂yj

þ δjk

�
dVy:

In general, the tensor is symmetric and positive definite. The geo-
metry of the cortical region of the early embryo, namely, a layer of
symmetric inclusions between two reflective surfaces, generates a
diffusion tensor with zero elements except for D11 ¼ D22. There-
fore, the system pertaining to this paper yields a DG that is scalar
and, without loss of generality, is determined by the cell problem
for f 1:

DG ¼ 1

jY j
Z
Ωϵ

c

Dc

�
∂f 1
∂y1

þ 1

�
dVy:

Note in the main text we refer to the relative diffusivity,
G ¼ DG∕Dc.

Numerical Calculation of the Effective Diffusivity. In order to deter-
mine the effective diffusivity defined in Eq. 4 of the main text, the
cell problem (Eqs. S22 and S23) is solved using finite element

methods with COMSOL Multiphysics (COMSOL, Inc.). The
problem for f 1 simplifies to solving Laplace’s equation in Ωϵ

c, with
boundary condition

∇f 1 · n ¼ e1 · n

on the surface of the nucleus. The reference cell is modeled as a
sphere inside a cuboid of variable size (Fig. 2C in the main text).
Periodic boundary conditions on the lateral faces are imposed, as
well as a reflective boundary condition on the top of the cuboid,
the barrier between the embryo and the outside environment. We
also impose a reflective boundary condition on the bottom of
the cuboid, which we recognize as an assumption, because there
is no well defined barrier between the periplasm and yolk. Each
cell problem needs to be solved only once for a given geometric
configuration.

As an test of our results using finite elementmethods, we solved
the problem on a 2013 grid with the successive overrelaxation
method. Convergence was assumed when the solution changed
by less than 10−4% in one iteration. The results are nearly identical,
with an error on the order of 10−3. As a test of the homogenization
approach for the case κ ¼ 0, we performed Brownian-motion
simulations of point particles to determine the diffusivity in the
presence of spherical obstacles. The resulting effective diffusivities
matched with the results obtained by homogenization (8).

Geometric Effects. In this section we address the sensitivity of our
results on model geometry. It is observed that syncytial nuclei are
arranged in a quasi-hexagonal lattice in the cortical region of the
early embryo (9). For convenience, nuclei are aligned in a cubic
lattice in our model. We check our results against simulations
performed for nuclei arranged in a hexagonal lattice (8) and con-
firm that the configuration of inclusions has little influence on the
diffusivity. This conclusion is consistent with previous studies
(10, –12).

We also consider what happens to the diffusivity during cycle
14A when nuclei transform into objects shaped like rice grains.
We investigate the effect of unidirectionally oriented inclusions
on the diffusivity by simulating prolate spheroids with the major
axis perpendicular to the plasma membrane. Consistent with
other models, we conclude that the lateral diffusivity is lower for
elongated nuclei than for nonelongated nuclei of the same
volume (10, 11). Therefore, as nuclei lengthen during cycle 14A,
a decreasing observed diffusion coefficient is expected (Fig. S1).
We note, however, that the effect is not very significant (only ≈7%
change). On the other hand, if the volume of a nucleus increases
as it lengthens, elongation during late cycle 14A may play a more
substantial role in decreasing the diffusivity. The insignificance of
shape alone is apparent in Fig. S2, where the effective diffusivity
for a range of parameters is plotted for both spherical nuclei and
elongated nuclei.

Accuracy of the Maxwell Approximation. The relative effective
diffusivity is a function of the geometry of the problem, namely,
nuclear diameter, cortical thickness, the distance between the
periodically arranged nuclei (size of the reference cell), and
the distance between the nuclei and the outer membrane (posi-
tion of a nucleus within the reference cell). We postulate that the
portion of the effective diffusivity that depends only on geometry,
G, can be described by Maxwell’s formula, an expression that de-
pends only on the volumetric space occupied by the nuclei. For a
spherical nucleus inside a cuboidal cell, nuclear volume fraction is
1 − ϕ ¼ 4∕3πr3

l2h , which suggests that the effective diffusivity is inde-
pendent of the precise location of the nuclei within the reference
cell. It also implies that the effective diffusivity depends on a
specific relationship of the geometric parameters, r3

l2h, rather
than on their exact values. We test the approximation of this
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approximation by investigating the worse case: impenetrable nu-
clei, when κ ¼ 0 and the relative effective diffusivity is Deff

Dc
¼ G

ϕ. By
scanning the range of physical parameters, we find that the maxi-
mum error is less than 6%. Accuracy is worst when the nuclei are
very densely packed such that l ≈ 2r or when the cortical thickness
is about the size of the nuclei, h ≈ 2r. For the physical case when
molecules can enter and exit the nuclei, we find that the error
decreases with increasing κ. Specifically, for κ ¼ 1, the error is
less than 4%, and for κ ¼ 5, the error is less than 2%. We there-
fore conclude that, for the physical range of parameters that
describe the syncytial embryo, the geometric portion of the
effective diffusivity can be accurately described by Maxwell’s
approximation.

Derivation of the Analytic Approximation. Maxwell’s formula pro-
vides an exact approximation to the effective diffusivity when
the reference cell is a cube. Although we have concluded that this
historical formula provides a good estimate for our system, we
seek an even better analytical approximation that accounts for
the anisotropy of the cortical region. We do so by manipulating
Maxwell’s formula to derive an expression that depends not only
on ϕ and κ but also on the detailed geometry of the syncytium,
namely, nuclear radius and cortical thickness:

G ¼ 1 −
3ð1 − ϕÞ

2þ αð1 − ϕÞ3∕2 ; [S30]

where α ¼
ffiffiffiffi
3
4π

q
ðhrÞ3∕2. This estimate for the effective diffusivity is

within 2% of our numerical results. Note that in the limit
α → 1∕

ffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ

p
, Maxwell’s approximation is recovered. The ex-

pression is derived to provide an approximation for a noncubic
reference cell, for the two cases of anisotropy: (i) The height
of the cortex is greater than the length of the reference cell
h > l, and (ii) the height of the cortex is smaller than the length
of the reference cell h < l. For both cases, the analytic approxi-
mation is obtained by constructing a cube of length l around the
spherical nucleus. We suppose that the effective diffusivity for
this region follows Maxwell’s formula:

Ĝ ¼ 2ϕ̂

3 − ϕ̂
;

where

1 − ϕ̂ ¼ Vn

V̂T

¼ Vn

l3

is the volume fraction of the sphere inside the imagined cube. For
the first case, the imagined cube is smaller than the reference cell.
We assume molecules undergo free diffusion in the cytoplasmic
region outside of the cube. The weighted average of the two
diffusivities,

G ¼ V̂ T

VT
Ĝþ

�
1 −

V̂ T

VT

�
;

yields Eq. S30. For the second case, the constructed cube is larger
than the reference cell. We suppose that the effective diffusivity
of the cube can be written in terms of the weighted average of the
diffusivity of the reference cell and the (free) diffusivity in region
outside of the reference cell:

Ĝ ¼ VT

V̂T

Gþ
�
1 −

VT

V̂T

�
:

This also gives Eq. S30. Note in Fig. S2, the approximation breaks
down when either the height of the cortical region or the length of

the reference cell is about the same size as the diameter of the
nucleus, presumably because we can no longer accurately capture
molecular movement in an environment where inclusions are not
well separated. The approximation, however, is still within 2% of
our numerical results.

Three-Dimensional Analysis. We evaluate how well the homogeni-
zation technique approximates the real solution to the diffusion
problem by comparing our homogenization results with 3-dimen-
sional simulations of the problem. Spherical nuclei are arranged
periodically along the length of the embryo. We take a section of
the monolayer and impose the following boundary conditions:
constant production at the anterior end of the embryo, zero flux
at the posterior end, zero flux at the outer and inner membranes
of the cortex, and periodic boundary conditions on the lateral
faces. Solving the microscopic system, Eqs. S1–S4, with
COMSOL Multiphysics (COMSOL) for a range of values for
κ and ϕ, we find that the solution matches the homogenized solu-
tion with an error <1% (illustrated in Fig. 2D of the main text).

Details of Modeling the Bicoid Gradient. The 1-dimensional system
of equations for the dynamics of Bicoid is given by

∂Cc

∂t
¼ Deff

∂2Cc

∂x2
−
ðϕkc þ κð1 − ϕÞknÞ

ϕþ κð1 − ϕÞ Cc þ
ϕ

ϕþ κð1 − ϕÞ jðxÞ;
[S31]

Deff
∂Cc

∂x

����
x¼0

¼ 0; Deff
∂Cc

∂x

����
x¼L

¼ 0. [S32]

The system is nondimensionalized using the following transfor-
mations: z ¼ x∕L, τ ¼ t∕T, and Cðz;τÞ ¼ DcCðx;tÞ∕QL.

The effective diffusivity changes between nuclear cycles and is
described by a piecewise constant function (Fig. S4). Gregor et al.
(6) demonstrated that nuclear diameter increases during inter-
phase, which explains the experimentally observed decrease in
nuclear concentration during each cycle. Because we do not
consider a dynamic nuclear diameter in this study, nuclear con-
centration predicted by the model actually increases during inter-
phase (Fig. S5D). We note that a changing nuclear diameter can
be included in the model by describing the effective diffusivity by
a piecewise linear, time-dependent function.

Procedure to determine the width and stability of the gradient. The
Bcd concentration profile is observed to have an exponential
shape with a decay length between 10% and 20% of the embryo
length (5). Using Matlab’s fit function, we fit our numerical solu-
tion at the end of interphase i to an exponential curve: Ae−z∕λi . If
0.1 ≤ λ̄ ≤ 0.2, then the gradient is considered to have the correct
shape. We also ensure our numerical results are consistent with
the nuclear-stability criterion: Gradients of nuclear Bcd are at
least 10% accurate over the last five nuclear cycles between
10% and 50% of the embryo length (6). Stability is checked
by computing the relative change of the gradient between two
successive nuclear cycles: gi;i−1ðzÞ ¼ ðNiðzÞ −Ni−1ðzÞÞ∕Ni−1ðzÞ,
where 0.1 ≤ z ≤ 0.5 andNiðzÞ is the nondimensional nuclear con-
centration of cycle i. The function g is then averaged over both
space and consecutive cycles. If the absolute value of the result is
less than 0.1, the nuclear gradient is considered stable.

An example of gradient dynamics predicted by the model is
shown in Fig. S5. The results are consistent with the shape, sta-
bility, and diffusivity determined by experiments. Examples of nu-
clear gradients that do not fit the criteria are shown in Fig. S6.

Sample and Shvartsman www.pnas.org/cgi/doi/10.1073/pnas.1001139107 4 of 7

http://www.pnas.org/cgi/doi/10.1073/pnas.1001139107


1. Hornung, U (1997) Homogenization and Porous Media (Springer, New York).

2. Brenner H, Leal LG (1978) Interfacial resistance to interphase mass transfer in

quiescent two-phase systems. AlChE J 42:246–254.

3. Auriault JL, Lewandowska J (1997) Modelling of pollutant migration in porous media

with interfacial transfer: Local equilibrium–non-equilibrium. Mech Cohes-Frict Mat

2:205–221.

4. Peter MA, Böhm M (2008) Different choices of scaling in homogenization of diffusion

and interfacial exchange in a porous medium. Math Method Appl Sci 31:1257–1282.

5. Gregor T, Bialek W, de Ruyter van Steveninck RR, Tank DW, Wieschaus EF (2005)

Diffusion and scaling during early embryonic pattern formation. Proc Natl Acad Sci

USA 102:18403–18407.

6. Gregor T, Wieschaus EF, McGregor AP, Bialek W, Tank DW (2007) Stability and nuclear

dynamics of the bicoid morphogen gradient. Cell 130:141–152.

7. Foe VE, Alberts BM (1983) Studies of nuclear and cytoplasmic behaviour during the
five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci
61:31–70.

8. Leffler AE (2009) Simulating diffusion in a heterogeneous, anisotropic medium:
insights into the Bicoid gradient in Drosophila melanogaster. Senior thesis. Princeton
University, New Jersey.

9. Warn RM, Magrath R (1983) F-actin distribution during the cellularization of the
Drosophila embryo visualized with FL-phalloidin. Expl Cell Res 143:103–114.

10. El-Kareh AW, Braunstein SL, Secomb TW (1993) Effect of cell arrangement and inter-
stitial volume fraction on the diffusivity of monoclonal antibodies in tissue. Biophys J
64:1638–1646.

11. Chang HC (1983) Effective diffusion and conduction in two-phase media: A unified
approach. AlChE J 29:846–853.

12. Saez AE, Perfetti JC (1991) Prediction of effective diffusivities in porous media using
spatially periodic models. Trans Por Med 6:143–157.

Fig. S1. The effective diffusivity depends weakly on nuclear shape for the geometric configuration of cycle 14. The portion of the relative effective diffusivity
that characterizes volume exclusion effects is plotted as a function of the prolate spheroid’s aspect ratio. Nuclear volume is fixed with a cortical thickness of
30 μm and a nuclear diameter of 6.5 μm.
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Fig. S2. The relative effective diffusivity plotted as a function of nuclear volume fraction for multiple values of the equilibrium constant. Each dot represents
the effective diffusivity in the presence of spherical nuclei, for a particular set of geometric parameters as indicated in Fig. 3 of the main text. Each asterisk
represents the effective diffusivity in the presence of spheroidal nuclei, where parameters are chosen from the following ranges: r ∈ ½0.7;5�, h ∈ ½10;30�,
l ∈ ½3;24�, and ε ∈ ½2;20�, where ε is the ratio of the vertical radius to the horizontal radius. The solid lines are the analytical expression Eq. S6 in the
main text.
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Fig. S3. The portion of the relative effective diffusivity that characterizes volume exclusion effects, G, is plotted as a function of nuclear volume fraction.
numerical indicates that the function G is found computationally using finite element methods. Maxwell indicates that G is given by Maxwell’s formula, and
derived analytical refers to Eq. 30.
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Fig. S4. The relative effective diffusivity as a function of time. During the interphase of each nuclear cycle, diffusivity is reduced, whereas free diffusion is
restored during mitosis. Free diffusion is also assumed during the first 9 cycles because nuclear density is very low.
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Fig. S5. The solution to the one-dimensional homogenized problem for Bicoid concentration that is consistent with the observed gradient dynamics. Here,
Dc ¼ 0.3 μm2∕s, kc ¼ 0, λs ¼ 0.1, and the other parameter values are indicated in Table S1. (A) Concentration profiles at the end of cycle 13 interphase. (B) The
concentration of nuclear Bicoid at the end of interphase 10–14. For the chosen parameter values, the gradient of nuclear concentration, and consequently
morphogen level per nucleus, is stable over the last five cycles. (C) Space-time plot of total concentration. The amplitude of the gradient increases as time
progresses. (D) Space-time plot of nuclear concentration. Blue bands represent mitosis, the time when nuclear membranes are broken and nuclear concen-
tration is zero. Arrows indicate the end of cycle 13 interphase.
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Fig. S6. Numerical solutions that are inconsistent with the observed gradient dynamics. The concentration of nuclear Bicoid at the end of interphase 10–14 are
shown for Dc ¼ 5 μm2∕s, and λs ¼ 0. (A) For kc ¼ 0 and kd ¼ 0, the gradient is too shallow. (B) For kc ¼ 0.0033 s−1 and kd ¼ 0, the gradient is too sharp. (C) For
kc ¼ 0 and kd ¼ 0.0033 s−1, the nuclear gradient is unstable: Bcd levels per nucleus vary too much between cycles.

Table S1. Model parameters

Parameter Value Description

r 3.25 μm Nuclear radius (average value at cycle 14); ref. 6
h 18 μm Cortical thickness (averaged over cycles 10–14); ref. 6
L 500 μm AP embryo length; ref. 6
H 180 μm DV embryo length; ref. 6
T 72 min Duration of cycles 1–9; ref. 7
T cyc 9, 10, 12, 21, 65 min Duration of cycles 10–14; ref. 7
Tmit 3, 3, 3, 5 min Duration of mitosis for cycles 10–13; ref. 7
κ 5 Nuclear-cytoplasmic equilibrium constant; ref. 6
kc 0–0.0033 s−1 Cytoplasmic degradation rate
Dc 0–35 μm2∕s Cytoplasmic diffusion constant
λs 0–100 μm Characteristic length of the protein source
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