
Multiscale modeling of diffusion
in the early Drosophila embryo
Christine Sample and Stanislav Y. Shvartsman1

Department of Chemical Engineering and Lewis–Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, NJ 08544

Edited* by Avner Friedman, Ohio State University, Columbus, OH, and approved April 22, 2010 (received for review January 28, 2010)

We developed a multiscale approach for the computationally effi-
cient modeling of morphogen gradients in the syncytial Drosophila
embryo, a single cell with multiple dividing nuclei. By using a
homogenization technique, we derived a coarse-grained model
with parameters that are explicitly related to the geometry of the
syncytium and kinetics of nucleocytoplasmic shuttling. One of our
main results is an accurate analytical approximation for the effec-
tive diffusivity of a morphogen molecule as a function of the nu-
clear density. We used this expression to explore the dynamics of
the Bicoid morphogen gradient, a signal that patterns the anterior-
posterior axis of the embryo. A similar approach can be used to
analyze the dynamics of all three maternal morphogen gradients
in Drosophila.

A morphogen gradient is defined as a concentration field of a
molecule that acts as a dose-dependent regulator of cell dif-

ferentiation. Morphogen gradients can be formed by proteins
that diffuse from a localized source of production. Cells located
different distances from the source are exposed to different levels
of the morphogen, express different genes, and assume different
cell fates (1–3). Some of the earliest experimental tests of this
model were provided by studies of pattern formation inDrosophi-
la, at a stage when the embryo is a syncytium, a cell with multiple
dividing nuclei (4).

Nuclear divisions in the syncytial embryo are accompanied by
the formation of morphogen gradients that control gene expres-
sion along the anteroposterior (AP) and dorsoventral (DV) axes
(5). The AP axis is patterned by the concentration gradient of the
transcription factor Bicoid (Bcd), the DV patterning depends on
the nuclear localization gradient of the transcription factor
Dorsal (Dl), and the embryonic termini are patterned by the
phosphorylation gradient of the MAPK. Thus, the AP morpho-
gen is distributed in a gradient of protein concentration, the DV
morphogen is distributed in a gradient of subcellular localization,
and the terminal morphogen is distributed in a gradient of pro-
tein phosphorylation (Fig. 1).

The mechanisms leading to the formation of these three gra-
dients are all different: Bcd is translated from an anteriorly loca-
lized maternal transcript. Dl, sequestered in the cytoplasm in an
inhibitory complex, is released from this complex and enters the
nuclei only on the ventral side of the embryo. The terminal pat-
terning gradient depends on the localized phosphorylation of a
uniformly distributed protein (MAPK). Bcd and Dl control gene
expression by binding to the regulatory regions of their transcrip-
tional targets. MAPK, on the other hand, controls gene expres-
sion indirectly, through enzymatic modification of uniformly
distributed transcriptional repressors. Despite these important
mechanistic differences in the formation and interpretation of
the AP, DV, and terminal gradients, they share a number of simi-
larities. In each case, a morphogen molecule (Bcd, Dl, or phos-
phorylated MAPK) is produced from a localized source, diffuses
between the syncytial nuclei, and shuttles between the nuclear
and cytoplasmic compartments.

Experiments with fixed embryos quantified the distributions of
the AP, DV, and terminal gradients (6–8). Live imaging studies
characterized the lateral mobilities of Bcd and Dl in the syncy-
tium and the rates of their nucleocytoplasmic shuttling (6, 9).

In order to test the models proposed for the formation of mater-
nal morphogen gradients, it is necessary to determine whether the
observed shapes of morphogen gradients are consistent with the
observed diffusivities and nuclear exchange rates, as well as with
the assumed patterns of morphogen production. Answering this
question requires a modeling framework that can connect the
rates of constituent processes, such as diffusion and nuclear im-
port/export, to the dynamics of concentration fields. Develop-
ment of such a framework is the main goal of this work.

We model the syncytium as a periodic arrangement of com-
partments, each of which contains a single nucleus and an asso-
ciated region of the cytoplasm. We then use a homogenization
technique to derive a spatially averaged diffusion model, with the
diffusion coefficient related to the sizes and densities of nuclei
and rates of nucleocytoplasmic shuttling (10, 11). To illustrate
our approach, we use the homogenized model to explore the dy-
namics and stability of the Bcd gradient. A similar approach can
be used to study the dynamics of all three maternal morphogens.

Model
We focus on the embryo during the last five nuclear division
cycles, when nuclei are arranged in the cortical region between
the yolk and the plasma membrane (Fig. 2). Depending on the
nuclear cycle, there can be anywhere from 500 to over 6,000 nu-
clei in the cortical region. The system is characterized by a clear
separation of length scales: The size of a single nucleus is several
microns, whereas the dimension of the embryo is on the order of
hundreds of microns. Morphogen molecules, such as Bcd, Dl, and
phosphorylated MAPK, diffuse between the nuclei and undergo
nucleocytoplasmic shuttling (6, 9). We are interested in deter-
mining the influence of these processes on the dynamics of mor-
phogen gradients.

To analyze this problem, we model the cortical region of the
syncytium as a periodic repetition of a reference cell, which con-
tains a single nucleus and an associated cytoplasmic region
(Fig. 2C). We denote the height of the reference cell h, its length
(and width) l, nuclear radius r, and nuclear distance from the
outer membrane a. The fraction of the reference cell occupied
by the cytoplasm is denoted ϕ, and conversely 1 − ϕ is the fraction
of space occupied by the nucleus, precisely defined as

1 − ϕ ¼ 4∕3πr3

l2h
: [1]

Cytoplasmic and nuclear concentrations, as well as diffusivities,
are defined in their respective regions. Specifically, the cytoplas-
mic (nuclear) variables are positive if the position lies in the
cytoplasm (nucleus), and zero elsewhere. Thus, we begin with
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a reaction-diffusion problem with spatially periodic coefficients
(Fig. 2D).

In this framework, a mathematical model for morphogen dy-
namics incorporates diffusion in both compartments of the refe-
rence cell coupled with an interfacial boundary condition on the
surface of the nucleus. To model nuclear import and export, we
characterize the surface of the nucleus by a partially absorbing
boundary condition. For instance, the rate of import per unit area
is given by the product of the surface reaction rate constant,
denoted by kþ, and the cytoplasmic concentration. The integral
of this product over the surface of the nucleus gives the total rate
of nuclear import. Nuclear export is modeled in a similar way
(here, the surface reaction rate constant is denoted k−).

For continuity, the resulting set of equations in the reference
cell must be solved for every syncytial nucleus and be linked to the
problems for neighboring nuclei. Finding a solution to such a
complex problem is not a trivial task, considering the complex
boundary conditions and the sheer number of nuclei in the late
syncytium. Thus, we seek a more manageable model that des-
cribes gradient formation in the entire embryo.

Results
Homogenization. We start by considering diffusion and nucleo-
cytoplasmic shuttling of a stable protein. Our model syncytium
belongs to the class of spatially periodic heterogeneous materials
that can be successfully studied by using a technique called homo-
genization. The formal approach of homogenization theory,
namely, the method of asymptotic expansions, has been widely
used to study a variety of processes in physics, engineering,
and biology (10–12).

The main goal of homogenization is to average out substruc-
ture variations in materials that are spatially heterogeneous
(Fig. 2D). Homogenization theory relies on the assumption that
the medium can be composed of the spatial repetition of a much
smaller reference cell (Fig. 2C) (11). First, a microscopic descrip-
tion of the phenomena is established in the reference cell. The
asymptotic expansion technique is then employed to derive a sim-
plified macroscopic problem for the entire domain, with coeffi-
cients depending on the microscopic properties. Details of the
multiscale expansion method are described in SI Text; see also
refs. 10, 11, 13, and 14.

Before carrying out a formal homogenization procedure, we
make an additional approximation. Live imaging experiments

with fluorescently tagged Bcd and Dl proteins suggest that
the system operates in a regime of rapid nuclear kinetics; the
time required for the two concentrations to reach local equili-
brium through surface reactions is much faster than the esta-
blishment of the gradient (6, 9). Within the framework of our
model, the nuclear and cytoplasmic concentrations are related
as follows:

Cn ¼ κCc: [2]

In this equation, Cc is defined as the volume average over the
cytoplasmic region of the reference cell; similarly, Cn is the
volume-averaged nuclear concentration, and κ ≡ kþ∕k− is the
equilibrium constant that characterizes the nucleocytoplasmic
shuttling. With this assumption, the homogenization approach
leads to the following equation for the dynamics of the cytoplas-
mic concentration:

∂Ccðx;tÞ
∂t

¼ ∇ · ðDeff∇Ccðx;tÞÞ; [3]

Fig. 2. Geometric model of the syncytial blastoderm. Nuclei were marked by
using SYTOX Green (Invitrogen; 1∶10;000 dilution). Top cross-section images
were taken by using Zeiss LSM510 confocal microscope with a Zeiss 20× (NA
0.45) A-plan objective. (A) Top view of nuclei in cycle 10 and 14A embryos. (B)
Layer of nuclei in the cortical region at the beginning of cycle 14A. (C) Re-
ference cell composed of a nucleus Ωn and surrounding cytoplasm Ωc , where
the boundary separating the two compartments is denoted Γ. The reference
cell is periodically repeated to make up the cortical region of the embryo Ω.
The method of homogenization requires a small scale parameter, defined as
ϵ ¼ l∕L, where l is the size of the reference cell and L is the length of the
embryo. (D) Illustrative example showing that the method of homogeniza-
tion effectively smooths substructure variations caused by the presence of
the nuclei. A cross-section of the solution at a given time (Top) is compared
to the solution of the homogenized equation (Bottom).

in
te

ns
ity

in
te

ns
ity

in
te

ns
ity

FC

B

ventral dorsal
0
dorsal

200

60

120

0

0 0.2 0.4

0.2 0.4
AP distance

0.6

0.6 0.8

0.8 1

1

AP distance

A

E

D

40

40

80

20

100

Fig. 1. Maternal morphogen gradients in the early embryo. See ref. 7 for the
method used to quantify the profiles. Embryos imaged for (A) Bicoid, (B)
Dorsal, and (C) phosphorylated MAPK. (Scale bar: 100 μm.) (D) Gradient of
Bicoid along the scaled AP axis. (E) DV gradient of nuclear dorsal. (F) Phos-
phorylation gradient of MAPK with peaks at the termini of the embryo.
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where Deff is the effective diffusivity. Variations in the vertical
direction are negligible because the cortical thickness is much
smaller than the size of the embryo, and hence x defines the
lateral dimensions of the embryo.

The main result of homogenization is the derived effective re-
action rates and diffusivities that are directly related to the para-
meters of the spatially heterogeneous problem (15). For the
problem above, these parameters are related to the geometry
of the reference cell, diffusivity in the cytoplasm, and rates of
nucleocytoplasmic shuttling. As described in SI Text, a multiscale
expansion approach leads to the following expression for the
effective diffusivity:

Deff

Dc
¼ Gðl;h;r;aÞ

ϕþ κð1 − ϕÞ : [4]

The numerator of this expression, G, depends only on the
parameters that define the geometry. This function can be found
numerically by using a finite element solution of the auxiliary
boundary value problem that emerges from the homogenization
approach (see SI Text for details). Once computed, G is used to
evaluate the effective diffusivity for arbitrary values of κ and the
geometric parameters (Fig. 3).

Analytical Approximation of the Effective Diffusivity. In addition to
computing the effective diffusivity numerically, we also found an
approximate analytical expression. When κ ¼ 0, our problem
reduces to finding the effective diffusivity in a system with peri-
odically arranged reflective obstacles. This problem has a long
history, starting from the seminal work by Maxwell (16).
Although there are no analytical expressions for our particular
geometry, existing analytical expressions for the effective diffu-
sivity are relatively insensitive to the precise arrangement of
obstacles (17–20). One approximation is given by the following
equation (20):

Deff

Dc

�
�
�
�
κ¼0

¼ G
ϕ
¼ 2

3 − ϕ
; [5]

which leads to G ¼ 2ϕ∕ð3 − ϕÞ. After substituting G into Eq. 4,
we obtain the following analytical approximation for the effective
diffusivity:

Deff

Dc
¼ 2

ð3 − ϕÞ
ϕ

ðϕþ κð1 − ϕÞÞ : [6]

Within the framework of this approximation, the effect of nu-
clei has been reduced to the product of two factors. The first, 2

3−ϕ,
depends only on ϕ and reflects the scattering effect of molecular
trajectories by nuclei. This factor would be present even for mo-
lecules that are not imported into the nucleus. The second factor,

ϕ
ϕþκð1−ϕÞ, depends both on the ratio of nuclear and cytoplasmic
volumes and on the equilibrium shuttling constant. One can easily
show that it can be interpreted as the fraction of time that the
diffusing particle spends in the cytoplasm. This factor commonly
arises in the analysis of diffusion problems with reversible
binding (21).

Thus, our computer-assisted homogenization approach led to
an analytical approximation that has a very clear physical inter-
pretation. Furthermore, we found that this approximation is very
close (within 6%) to our numerical results for the entire physical
range of nuclear volume fractions (Fig. 3). In the absence of
nuclei, ϕ ¼ 1 and Eq. 6 predicts that the effective diffusivity is
equal to the cytoplasmic diffusivity. When κ ¼ 0, we recover
the well-known Maxwell expression, scaled by the cytoplasmic
volume fraction.

We note that the ad hoc algebraic expression derived in our
earlier model of the Bcd gradient is 3−ϕ

2
times larger than the

effective diffusivity derived here in a more systematic way (21).
We ultimately find that for maximal density of spherical nuclei in
the syncytial blastoderm (1 − ϕ ≈ 0.3), the presence of impene-
trable nuclei causes only a 10% decrease in diffusivity relative
to the free cytoplasmic case with no nuclei. Diffusivity is further
decreased once nucleocytoplasmic shuttling is introduced into
the system. For a nucleocytoplasmic shuttling constant of 5
(6), the effective diffusivity is 30% of the free cytoplasmic
diffusivity.

Modeling the Bcd Gradient. On the basis of the fact that Eq. 6 is
accurate over a wide range of model parameters, we propose
to use it for the analysis of the dynamics of maternal morphogen
gradients. To illustrate this approach, we use the homogenized
model to explore the dynamics of the Bcd gradient. One can show
that a homogenized version of the model that accounts for the
production, diffusion, cytoplasmic degradation, and nucleocyto-
plasmic shuttling of Bcd molecules is the following reaction-
diffusion problem:

∂Cc

∂t
¼ Deff∇2Cc − keffCc þ jeff ; [7]

where it is assumed that the anterior and posterior ends of the
embryo are impermeable to Bcd molecules. Thus, the only
modification of the derived homogenized equation (Eq. 3) is
the appearance of effective parameters: the effective rate for
Bcd degradation in the cytoplasm, keff , and the effective term
for the source of the protein, jeff .

The effective rate of degradation is equal to the product of
the cytoplasmic degradation rate, kc, and the fraction of time
that the diffusing Bcd molecule spends outside the nuclei:
keff ¼ ϕ

ϕþκð1−ϕÞ kc. Similarly, the source function is scaled to reflect
the fact that Bcd molecules are produced only in the cytoplasm:
jeff ¼ ϕ

ϕþκð1−ϕÞ jðxÞ. Here, we assume an exponentially distributed
source, jðxÞ ¼ Q

λs
e−

x
λs , where Q is the rate of production and λs is

the characteristic length of the source.
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Fig. 3. The relative effective diffusivity plotted as a function of nuclear vo-
lume fraction (up to the maximum π∕6 ≈ 0.52), for multiple values of the
equilibrium constant. Each dot represents the effective diffusivity found com-
putationally for the indicated equilibrium constant and a particular set of
geometric parameters chosen from the following ranges: r ∈ ½1;6�,
h ∈ ½10;30�, a ∈ ½0.1;5�, and l ∈ ½6;24�. The solid lines are the analytical expres-
sion Eq. 6; see text for details.
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To model the effect of nuclear doubling, we partition the
developmental time into distinct intervals that correspond to
different nuclear cycles (4). We solve the homogenized equation
(Eq. 7) with the appropriate diffusivity over each time interval.
Free diffusion is assumed during the first nine cycles, a time when
nuclear density is very low, and also during mitosis, a period when
the nuclear envelope breaks down and Bicoid molecules are re-
leased from the nuclei to the surrounding cytoplasm. During in-
terphase, the effective diffusivity is determined by Eq. 6. The
timings for the interphase and mitosis of each nuclear cycle vary
and are taken from ref. 4. Thus, the dynamics of the Bcd gradient
is modeled by a diffusion problem with piecewise constant,
time-dependent diffusivity (SI Text), where we have assumed that
nuclei have constant radius and that their maximum size is
reached instantaneously following mitosis.

A model for the dynamics of Bcd contains three free para-
meters: free diffusivity Dc, the cytoplasmic degradation rate kc,
and the characteristic length of the source λs. The cytoplasmic
diffusion constant has been reported to be anywhere from 0.3
(6) to 20 μm2∕s (22). The time scale of Bcd degradation (23)
has been estimated to range from ∼5–10 minutes (24) to infinite
(21). Last, it has been commonly assumed that a constant source
of Bcd is localized to the anterior pole of the embryo (6, 21, 22,
25), corresponding to λs ¼ 0. However, a recent paper proposed
that the Bcd source (bcd mRNA) is itself distributed in a gradient
(26). In this case, 0 < λs ≤ λp, where λp is the characteristic length
of the protein gradient.

By using the homogenized model, we can easily scan the three-
dimensional space of model parameters. On the basis of the geo-
metry of the syncytium and the experimentally determined value
of the shuttling constant (κ ¼ 5) (6), we look for values of the
three unknown parameters (Dc, kc, and λs) that are consistent
with the observed gradient dynamics. In particular, it is known
that the concentration profile of Bcd has an exponential shape
with a decay length between 50 and 100 μm, or about 10–20% of
the embryo length (22). It has also been observed that, following
mitosis, the nuclear gradient rapidly reestablishes to a quasi-
steady state within 10% of its premitotic levels (6). See SI Text
for solution examples and details of the procedure used to check
criteria.

For a tightly localized source (λs ≪ λp), we find that large cy-
toplasmic diffusion constants are needed to produce gradients
with the correct characteristic length. This is true for two extreme
cases of Bcd degradation, kc ¼ 0 and kc ¼ ð10 minÞ−1 (Fig. 4).
The diffusion coefficient must be particularly high when the pro-
tein is degraded, about 10 times larger than for an infinite half-
life, in order to avoid gradients that are too sharp. Nevertheless,
we find that a small cytoplasmic diffusion coefficient is feasible
when protein production is delocalized. For example, in the
absence of degradation, a diffusion constant of 0.3 μm2∕s [a value
that has been obtained in live imaging experiments with GFP-
tagged Bcd (6)] is possible if the distributed source has a decay
length between 5% and 15% of the length of the embryo
(Fig. 4A). When the protein is degraded, the source must extend
further to 10–20% of the embryo length (Fig. 4B). Essentially,
this means that for a Bcd lifetime ∼10 minutes, the source must
have the same shape as the protein gradient itself.

We have also analyzed a model when Bcd is degraded inside
the nuclei (22). A model that includes nuclear degradation is gov-
erned by Eq. 7, where Deff and jeff remain the same, but an addi-
tional term is added to keff :

κð1−ϕÞ
ϕþκð1−ϕÞ kn. This effective rate is a

product of the nuclear degradation rate, kn, and the fraction
of time that the diffusing molecule spends inside the nuclei.
We find that the criteria to match experimental gradients cannot
be satisfied for a Bcd nuclear lifetime of less than 30 min.

Discussion
Studies of pattern formation in the early Drosophila embryo are
now at a stage that requires quantitative models (27, 28). To
model the earliest steps of embryonic patterning, it is essential
to develop computationally efficient descriptions of diffusion
and nucleocytoplasmic shuttling of maternal morphogens. Here
we have demonstrated how this goal can be achieved by using a
homogenization theory. The main outcome of the homogeniza-
tion procedure is a clear relation of the effective transport para-
meters and reaction rates of the spatially averaged problem to the
original microscopic problem.

Whereas, in general, this relation must be obtained numeri-
cally, we were able to find a simple analytical expression that
is accurate over a wide range of model parameters. We illustrated
how the homogenized equations can be used as an efficient tool
for exploring the parameters of the original problem, such as the
nuclear density, rates of nucleocytoplasmic shuttling, and the spa-
tial pattern of Bcd synthesis. A similar approach can be used to
model the dynamics of all three maternal morphogen gradients,
as well as their interactions (29).

A key prerequisite of the homogenization approach is a wide
separation of geometric length scales, which is clearly satisfied for
the syncytial blastoderm. Indeed, the characteristic size of the
nucleus is much smaller than the characteristic length scales of
the patterning gradients and size of the embryo.

The proposed homogenization approach can be readily ex-
tended to models that account for more realistic descriptions
of nuclear import/export and chemical modifications of the mor-
phogen molecules (10, 11, 30, 31), as well as additional physical

0 25 50 75 100
0

1

2

3

0 25 50 75 100
0

5

10

15

20

co
nc

en
tr

at
io

n

B

A

C

degradation

source

distance

Fig. 4. (A) Schematic of morphogen gradient formation by synthesis, diffu-
sion, and spatially uniform degradation. The source of morphogen produc-
tion is distributed exponentially in the tissue. (B–C) Designating the times
of nuclear division (4), the geometry of the syncytium, r ¼ 3.25 μm and
h ¼ 18 μm, the nucleocytoplasmic shuttling constant, κ ¼ 5, and the cytoplas-
mic degradation rate, (B) kc ¼ 0 and (C) kc ¼ ð10 minÞ−1, leaves the diffusiv-
ity, Dc , the characteristic length of the extended source, λs, as the only free
parameters in the model. Their values are constrained by the experimental
measurements of the shape and accuracy of the Bicoid gradients, as indicated
by the shaded region. λp ¼ 50 μm and λp ¼ 100 μm indicate the lower and
upper bounds for the decay length of the protein gradient. Gradients above
the shaded region are too shallow, whereas gradients below are either too
sharp or the nuclear-stability condition is not satisfied (the accuracy of the
nuclear gradient is worse than 10%). See SI Text on how to test the criteria.
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effects, such as convective flows during the early nuclear division
cycles (32). Moreover, the approach is not limited to linear
problems and can be implemented in models with nonlinear
reactions (10), such as the model of the Dorsal morphogen
gradient (8). We stress that most of the work to formulate such
problems has already been accomplished with the derivation of
the effective diffusivity.

Finally, our multiscale framework provides an efficient method
for exploring the effects of different types of model uncertainty
(33). In the context of the Bcd gradient, one can straightforwardly
investigate the effects of variability of the strength and dynamics
of the source of Bcd production and degradation. Data presented
in Fig. 4 correspond to the two extreme regimes of Bcd degrada-
tion kinetics: the infinitely stable protein and protein degraded on

the time scale of minutes. In our ongoing work, we are examining
a model with more complex kinetics, where both the source term
and the degradation rate constant depend on time (e.g., the pro-
duction of Bcd can start later than time zero and its active degra-
dation can be delayed until the late syncytial cell cycles). Our
preliminary results with this model strongly favor the regime with
a significantly delocalized Bcd source.
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